1. Sakai R, Cohen DM, Henry JF, Burrin DG, Reeds PJ. Leucine-nitrogen metabolism in the brain of conscious rats: its role as a nitrogen carrier in glutamate synthesis in glial and neuronal metabolic compartments. J Neurochem 2004;88:612–622.
2. Cole JT, Mitala CM, Kundu S, Verma A, Elkind JA, Nissim I, Cohen AS. Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc Natl Acad Sci U S A 2010;107:366–371.
3. Jeter CB, Hergenroeder GW, Ward NH, Moore AN, Dash PK. Human mild traumatic brain injury decreases circulating branched-chain amino acids and their metabolite levels. J Neurotrauma 2013;30:671–679.
5. Brosnan JT, Brosnan ME. Branched-chain amino acids: enzyme and substrate regulation. J Nutr 2006;136(1 Suppl):207s–211s.
7. Davis JM, Alderson NL, Welsh RS. Serotonin and central nervous system fatigue: nutritional considerations. Am J Clin Nutr 2000;72(2 Suppl):573s–578s.
8. Pardridge WM, Choi TB. Neutral amino acid transport at the human blood-brain barrier. Fed Proc 1986;45:2073–2078.
9. Aquilani R, Iadarola P, Contardi A, Boselli M, Verri M, Pastoris O, et al. Branched-chain amino acids enhance the cognitive recovery of patients with severe traumatic brain injury. Arch Phys Med Rehabil 2005;86:1729–1735.
12. Aquilani R, Viglio S, Iadarola P, Guarnaschelli C, Arrigoni N, Fugazza G, et al. Peripheral plasma amino acid abnormalities in rehabilitation patients with severe brain injury. Arch Phys Med Rehabil 2000;81:176–181.
13. Kim HY, Huang BX, Spector AA. Phosphatidylserine in the brain: metabolism and function. Prog Lipid Res 2014;56:1–18.
14. Akbar M, Baick J, Calderon F, Wen Z, Kim HY. Ethanol promotes neuronal apoptosis by inhibiting phosphatidylserine accumulation. J Neurosci Res 2006;83:432–440.
15. Ugolini AM, Nothdorf RA, Searcy KJ, Taylor CL, Spidle DL. Ethanol alters brain phospholipid levels which correlate with altered brain morphology. Comp Biochem Physiol B Biochem Mol Biol 1997;116:407–417.
16. Delwaide PJ, Gyselynck-Mambourg AM, Hurlet A, Ylieff M. Double-blind randomized controlled study of phosphatidylserine in senile demented patients. Acta Neurol Scand 1986;73:136–140.
19. Akar E, Emon ST, Uslu S, Orakdogen M, Somay H. Effect of L-Arginine Therapy on Vasospasm: Experimental Study in Rats. World neurosurgery 2019;132:e443–e446.
20. Ozüm U, Aslan A, Karadağ O, Gürelik M, Taş A, Zafer Kars H. Intracisternal versus intracarotid infusion of L-arginine in experimental cerebral vasospasm. Journal of clinical neuroscience: official journal of the Neurosurgical Society of Australasia 2007;14:556–562.
21. Ozüm U, Aslan A, Taş A, Kars HZ. Intracarotid L-arginine reverses motor evoked potential changes in experimental cerebral vasospasm. Turk Neurosurg 2007;17:13–18.
23. Albrecht J, Sidoryk-Węgrzynowicz M, Zielińska M, Aschner M. Roles of glutamine in neurotransmission. Neuron Glia Biol 2010;6:263–276.
25. Shin DW. Parenteral Glutamine Supplementation, Is It Optimal or Not? Surg Metab Nutr 2018;9:5–10.
26. McKenna MC. The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 2007;85:3347–3358.
28. Son H, Baek JH, Go BS, Jung DH, Sontakke SB, Chung HJ, et al. Glutamine has antidepressive effects through increments of glutamate and glutamine levels and glutamatergic activity in the medial prefrontal cortex. Neuropharmacology 2018;143:143–152.
30. Kreymann KG, Berger MM, Deutz NE, Hiesmayr M, Jolliet P, Kazandjiev G, et al, DGEM (German Society for Nutritional Medicine); Ebner C, Hartl W, Heymann C, Spies C, ESPEN (European Society for Parenteral and Enteral Nutrition). ESPEN Guidelines on Enteral Nutrition: Intensive care. Clin Nutr 2006;25:210–223.
31. Vanek VW, Matarese LE, Robinson M, Sacks GS, Young LS, Kochevar M, Novel Nutrient Task Force, Parenteral Glutamine Workgroup; American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Board of Directors. A.S.P.E.N. position paper: parenteral nutrition glutamine supplementation. Nutr Clin Pract 2011;26:479–494.
32. Hazell AS. Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem Int 2007;50:941–953.
33. Kempski O, von Andrian U, Schürer L, Baethmann A. Intravenous glutamate enhances edema formation after a freezing lesion. Adv Neurol 1990;52:219–223.
34. Berg A, Bellander BM, Wanecek M, Norberg A, Ungerstedt U, Rooyackers O, et al. The pattern of amino acid exchange across the brain is unaffected by intravenous glutamine supplementation in head trauma patients. Clin Nutr 2008;27:816–821.
35. Solovyev ND. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J Inorg Biochem 2015;153:1–12.
38. Leiter O, Zhuo Z, Rust R, Wasielewska JM, Grönnert L, Kowal S, et al. Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging. Cell Metab 2022;34:408–423.e8.
39. Khalili H, Ahl R, Cao Y, Paydar S, Sjölin G, Niakan A, et al. Early selenium treatment for traumatic brain injury: Does it improve survival and functional outcome? Injury 2017;48:1922–1926.
40. Landucci F, Mancinelli P, De Gaudio AR, Virgili G. Selenium supplementation in critically ill patients: a systematic review and meta-analysis. J Crit Care 2014;29:150–156.
46. Bruder N, Raynal M, Pellissier D, Courtinat C, François G. Influence of body temperature, with or without sedation, on energy expenditure in severe head-injured patients. Crit Care Med 1998;26:568–572.
47. Krakau K, Omne-Pontén M, Karlsson T, Borg J. Metabolism and nutrition in patients with moderate and severe traumatic brain injury: a systematic review. Brain Inj 2006;20:345–367.
48. Robertson CS, Clifton GL, Grossman RG. Oxygen utilization and cardiovascular function in head-injured patients. Neurosurgery 1984;15:307–314.
50. Bardutzky J, Georgiadis D, Kollmar R, Schwarz S, Schwab S. Energy demand in patients with stroke who are sedated and receiving mechanical ventilation. J Neurosurg 2004;100:266–271.
54. Kress JP, O'Connor MF, Pohlman AS, Olson D, Lavoie A, Toledano A, et al. Sedation of critically ill patients during mechanical ventilation. A comparison of propofol and midazolam. Am J Respir Crit Care Med 1996;153:1012–1018.
55. Boyd O, Grounds M, Bennett D. The dependency of oxygen consumption on oxygen delivery in critically ill postoperative patients is mimicked by variations in sedation. Chest 1992;101:1619–1624.
56. Terao Y, Miura K, Saito M, Sekino M, Fukusaki M, Sumikawa K. Quantitative analysis of the relationship between sedation and resting energy expenditure in postoperative patients. Crit Care Med 2003;31:830–833.
60. Oshima T, Furukawa Y, Kobayashi M, Sato Y, Nihei A, Oda S. Fulfilling caloric demands according to indirect calorimetry may be beneficial for post cardiac arrest patients under therapeutic hypothermia. Resuscitation 2015;88:81–85.
61. Ridley EJ, Davies AR, Bernard S, McArthur C, Murray L, Paul E, et al, ANZICS Clinical Trials Group. Measured energy expenditure in mildly hypothermic critically ill patients with traumatic brain injury: a sub-study of a randomized controlled trial. Clin Nutr 2021;40:3875–3882.
63. Williams ML, Nolan JP. Is enteral feeding tolerated during therapeutic hypothermia? Resuscitation 2014;85:1469–1472.
65. Joo WJ, Ide K, Kawasaki Y, Takeda C, Seki T, Usui T, et al. Effectiveness and safety of early enteral nutrition for patients who received targeted temperature management after out-of-hospital cardiac arrest. Resuscitation 2019;135:191–196.